Abstract Algebra-Revision
1-Functions

- A function has 3 parts;
$\left.\begin{array}{ll}\text { - domain } & X \\ \text { codomain } & Y\end{array}\right\} \begin{array}{cc}\forall x \in X & J \text { a unique } y \in Y \\ \text { St } & f(x)=y\end{array}$
- rule $f(x)=y \quad$ st $f(x)=y$
- Example $1.1-F: \mathbb{Z} \rightarrow \mathbb{R} \quad F(x)=\sqrt{x}$

$$
-1 \in \mathbb{Z} \quad F(-1)=\sqrt{-1} \notin \mathbb{R}
$$

\Rightarrow not a function
fix $\rightarrow g: \mathbb{N} \rightarrow \mathbb{R} \quad g(x)=\sqrt{x} \quad$ edit domain
$h: \underline{Z} \rightarrow \mathbb{C} \quad h(x)=\sqrt{x} \quad$ edit codomain

- Example 1.2-f: $\mathbb{Z} \rightarrow \mathbb{Z} \quad f(x)=\frac{x}{2}$

$$
I \in \mathbb{Z} \quad F(1)=\frac{1}{2} \notin \mathbb{Z}
$$

\Rightarrow not a function
Fix $\rightarrow g: 2 \mathbb{Z} \rightarrow \mathbb{Z} \quad g(x)=\frac{x}{2}$ edit domain
$h: \mathbb{Z} \rightarrow\left\{\left.\frac{n}{2} \right\rvert\, n \in \mathbb{N}\right\} \quad h(x)=\frac{x}{2}$ edit codomain

- Example 1.3-F:Z $\quad f(x)= \begin{cases}x+1 & x \geqslant 0 \\ x-1 & x \leqslant 0\end{cases}$

$$
\begin{aligned}
& 0 \geq 0 \Rightarrow F(0)=0+1=1 \\
& 0 \leqslant 0 \Rightarrow F(0)=0-1=-1
\end{aligned}
$$

\Rightarrow not a function (not well defined)

$$
\text { fix } \rightarrow g: \mathbb{Z} \rightarrow \mathbb{Z} \quad g(x)= \begin{cases}x+1 & x \geqslant 0 \\ x-1 & x<0\end{cases}
$$

edit function to make well defined

- Example $1.4-\quad F: \mathbb{Q} \rightarrow \mathbb{Z} \quad F\left(\frac{a}{b}\right)=a \cdot b$

$$
\begin{aligned}
& F\left(\frac{3}{7}\right)=3 \cdot 7=21 \\
& F\left(\frac{6}{14}\right)=6 \cdot 14=84
\end{aligned}
$$

$\begin{aligned} & \text { Two ways } \\ & \text { to write the }\end{aligned} \frac{3}{7}=\frac{6}{14} \quad f\left(\frac{3}{7}\right) \neq f\left(\frac{6}{14}\right)$
same element
of $\mathbb{Q} \quad \Rightarrow$ not well defined
个 can you see how we could fix this? can we specify a unique way to write fractions?

- Example $1.5-F: \mathbb{Q} \backslash\{0\} \rightarrow \mathbb{Q} F\left(\frac{a}{b}\right)=\frac{b}{a}+1$

$$
\begin{aligned}
& * \frac{a}{b} \in \mathbb{Q} \Rightarrow F\left(\frac{a}{b}\right)=\frac{b}{a}+1=\frac{b}{a}+\frac{a}{a} \\
&=\frac{b+a}{a} \in \mathbb{Q} \\
& \Rightarrow \forall x \in X \quad F(x) \in Y
\end{aligned}
$$

* Is this well defined
we need \rightarrow (is $F(x)$ unique?)
to check F is
well defined as Let $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ wit $\frac{a}{b}=\frac{c}{d}$
there are multiple
ways to express

$$
\begin{aligned}
& \Rightarrow a d=b c \\
& \Rightarrow \frac{a d}{a c}=\frac{b c}{a c} \\
& \Rightarrow \frac{d}{c}=\frac{b}{a} \\
& \Rightarrow \frac{d}{c}+1=\frac{b}{a}+1 \\
& \Rightarrow F\left(\frac{c}{d}\right)=F\left(\frac{a}{b}\right)
\end{aligned}
$$

fractions
\Rightarrow well defined

- Example 1.6- Let $N \unlhd G \longleftarrow$ we'll revisit normal SGS in §3

$$
\begin{aligned}
& F: G / N \times G / N \rightarrow G / N \quad F(N x, N y)=N x y \\
& x, y \in G \Rightarrow \quad x y \in G \\
& \Rightarrow N x, N y \in G / N \Rightarrow N(x y) \in G
\end{aligned}
$$

There are multiple ways to express cosets so we need to check mat F is well defined

Let $N_{x}, N_{x}, N_{y}, N_{y} \in G / N$ with

$$
\begin{aligned}
& N_{x}=N_{x}^{\prime} \text { and } N_{y}=N_{y}{ }^{\prime} \\
& \Rightarrow x x^{-1} \in N \quad y y^{-1} \in N \\
& \Rightarrow \exists n, m \in N \text { with } \\
& x x^{-1}=n \quad y y^{1^{-1}}=m \\
& \Rightarrow x=n x^{\prime} \quad y=m y^{\prime} \\
& \Rightarrow x y=n x^{\prime} m y^{\prime} \\
& =n x^{\prime} m x^{r^{-1}} x^{\prime} y^{\prime} \\
& \Rightarrow(x y y)\left(x^{\prime} y^{\prime}\right)^{-1}=\underbrace{n}_{n \neq N} \underbrace{x^{\prime} m x^{-1}}_{\zeta x^{\prime} m x^{\prime-1} \in N \text { since }} \\
& N \leq G \\
& \Rightarrow n x^{\prime} m x^{\prime^{-1}} \in N \\
& \Rightarrow(x y)\left(x^{\prime} y^{\prime}\right)^{-1} \in N \\
& \Rightarrow N x y=N x^{\prime} y^{\prime} \\
& \Rightarrow \text { well defined } \ddot{u}
\end{aligned}
$$

2-Congruences
2.1 - Definitions

- Let $m \in \mathbb{Z}$ with $m>1$, let $a, b \in \mathbb{Z}$ $a \equiv b \bmod m \Leftrightarrow m$ divides $(a-b)$
$\Leftrightarrow a$ and b have the same remainder when divided by m
- example clocks -

Let be 2 times in 24 -hour time

- Congruence classes = equiv classes under $a \sim b \Leftrightarrow a \equiv b \bmod m$

$$
\begin{aligned}
{[a] } & =\{k m+a \mid k \in \mathbb{Z}\} \\
& =\{\ldots, a-2 m, a-m, a, a+m, a+2 m, \ldots\}
\end{aligned}
$$

The "Standard" set of equiv classes are

$$
[0],[1], \ldots,[m-1]
$$

$-\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}=\{[0],[1], \ldots,[m-1]\}$
we sometimes drop the $[\cdot]$ notation

$$
[a]+[b]=[a+b] \quad[a] \cdot[b]=[a b]
$$

- Example - $m=5 \quad[1]=\{\ldots .-9,-4,1,6,11, \ldots$,

$$
\begin{array}{lr}
& \mathbb{Z}_{5}=\{[0],[1], \ldots ;[4]\} \\
{[1]+[3]=[4]} & {[2] \cdot[4]=[8]=[3]} \\
{[2]+[3]=[5]=[0]}
\end{array}
$$

2.2-Groups, Rings + Fields
(See lecture notes for proofs)

- $\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$ is a commutative ring
- $m=p$ prime $\Rightarrow \mathbb{F}_{p}=\mathbb{Z}_{p}=\mathbb{Z} p \mathbb{Z}$ is a Field $\mathbb{F}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$ is a group under x

$\mathbb{I}_{m} \backslash\{0\}$ is not a group
$U_{m}=\{a \in \mathbb{Z} / m \mathbb{Z} \mid \operatorname{gcd}(a, m)=1\}$ is a group
2.3-Finding Solutions

Let p prime, $c \neq 0$
$c x \equiv d \operatorname{modp} \Rightarrow$ unique soln
$c \in \mathbb{Z}_{p} \backslash\{0\}$ (a group)
$\Rightarrow c^{-1}$ exists
$\Rightarrow x \equiv c^{-1} d \bmod p$

$$
\Rightarrow x=\left[c^{-1} d\right]
$$

$c x \equiv d \bmod m$

* $\operatorname{gcd}(c, m)=1 \Rightarrow$ unique Sol
$\operatorname{gcd}(c, m)=1 \Rightarrow c \in U_{m}$
$\Rightarrow c$ has an inverse $\Rightarrow x \equiv c^{-1} d \bmod p$
$\Rightarrow x=\left[c^{-1} d\right]$

Solve $2 x \equiv 5 \bmod 7$
Lets find 2^{-1} in $\mathbb{Z}_{7} \backslash\{0\}$

$$
\begin{aligned}
& 2.1=1 \quad 2 \cdot 2=4 \quad 2 \cdot 3=6 \quad 2 \cdot 4=8 \equiv 1 \\
& \Rightarrow \quad 4 \cdot 2 x \equiv 4 \cdot 5 \bmod 7 \\
& \Rightarrow \quad x \equiv 20 \equiv 6 \bmod 7 \\
& \Rightarrow \quad x=[6]
\end{aligned}
$$

Solve $3 x \equiv 4 \bmod 10$

$$
\operatorname{gcd}(3,10)=1
$$

$\Rightarrow 3 \in U_{10}$, let's find 3^{-1}

$$
\begin{aligned}
& \text { 3.1 }=3 \quad 3 \cdot 2=3 \ldots \cdot 3 \cdot 7=21 \equiv 1 \\
& \Rightarrow x \equiv 7 \cdot 4 \operatorname{modio} \equiv 8 \bmod 10 \\
& \Rightarrow x=[8]
\end{aligned}
$$

$$
\begin{gathered}
* \operatorname{gcd}(c, m)=t \quad t \times d \\
\Rightarrow \text { no solus } \\
c x \equiv d \operatorname{modm} \\
\Rightarrow y \in \mathbb{S} s t \\
c x-m y=d \\
t|c, t| m \Rightarrow t \mid \angle H S \\
t X d \Rightarrow t X R H S
\end{gathered}
$$

$* \operatorname{gcd}(c, m)=t \quad t l d$
$\Rightarrow t$ solns

$$
C x \equiv d \bmod m
$$

\Rightarrow solve $c x-m y=d$ Find $x_{0}=$ initial son all solus;

$$
x_{i}=x_{0}+\left(\frac{m}{t}\right) ; \quad i=0, \ldots, t-1
$$

Show that $10 x \equiv 8 \bmod 20$ has no solus
(try this yourself)

$$
\begin{aligned}
& \quad 6 x \equiv 8 \bmod 20 \\
& \operatorname{gcd}(6,20)=2 \\
& \Rightarrow 2 \text { solis } \\
& 6 \cdot 1=6, \ldots, \quad 6 \cdot 8=48 \equiv 8 \\
& \Rightarrow x_{0}=8 \\
& x_{0}=[8] \quad x_{1}=\left[8+\left(\frac{20}{2}\right) 1\right] \\
& \\
& \quad=[18]
\end{aligned}
$$

3-Normal Subgroups + Quotients

- Let $N \leq G$, then N is normal write $N \unlhd G$ if one of the following holds:
$\left.\begin{array}{lll}\text { (1) } & \forall x \in N, & \forall g \in G \quad g^{-1} x g \in N \\ \text { (2) } \forall g \in G & g^{-1} N g=N \\ \text { (3) } & \forall g \in G & N g=g N \\ \text { (4) Set of left cosets }=\text { set of right cosets }\end{array}\right\}$
- Example 3.1- IF $H \leq G$ with $[G: H]=2$ then $H \leq G$ (normal $S G$) - Let $g \in G \backslash H$ then;

$$
\begin{aligned}
& \{H, H g\}=\text { right cosets }\{H, g H\}=\text { left cosets } \\
& H=H \Rightarrow H g=g H \\
& \Rightarrow \text { right costes }=\text { left cosets } \\
& \Rightarrow \text { normal by (4) }
\end{aligned}
$$

$$
-D_{2 n}=\underset{\substack{\boldsymbol{T} \\ \text { reflection }}}{\sigma, \rho_{R}} \underset{\text { rotation }}{ }
$$

$\langle\rho\rangle$ has index 2 in $D_{2 n}$

$$
\Rightarrow\langle\rho\rangle \triangleq D_{2 n}
$$

- Example 3.2- If G is abelian and $H \leq G \Rightarrow H \Delta G$ (normal SE)
- Let $g \in G \quad x \in H$

$$
g^{-1} x g=g^{-1} g x=1 x=x \in N \Rightarrow \text { normal by (1) }
$$

can you check N is normal by (2)-(4)?

- klein $4 \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ addition componentwise $\bmod 2$

$$
\langle(0,1)\rangle=\{(0,0),(0,1)\} \leq \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \text { abelian } \Rightarrow\langle(0,1)\rangle \leqq \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

- Example 3.3-Let p prime, $n \in \mathbb{N}$ (Quotients)

Let $G=G L_{n}(P) \quad N=S L_{n}(P)$
Let $\phi: G \rightarrow \mathbb{F}_{p}^{*} \quad \phi(g)=\operatorname{det}(g)$
Then ϕ is a homomorphism with kernel N
(can you check this yourself)
What is G / N ?

* By the $1^{\text {st }}$ isomorphism them

$$
\begin{aligned}
G / k e r \phi & \cong i m \phi \\
\Rightarrow & G / N \cong \operatorname{im} \phi
\end{aligned}
$$

what is imp ϕ ?

Let $a \in \mathbb{F}_{p}^{*}$ then $\phi\left(\begin{array}{lll}a & & \\ & \ddots & \ddots \\ & & \ddots\end{array}\right)=a$
$\Rightarrow \phi$ Surjective

$$
\begin{aligned}
& \Rightarrow \operatorname{im} \phi=\mathbb{F}_{p}^{*} \\
& \Rightarrow G / N \cong \mathbb{F}_{p}^{*}
\end{aligned}
$$

$*$ can we see this another way?

$$
\begin{align*}
& G / N=\{N g \mid g \in G\} \\
& \quad N g \cdot N h=N(g h) \\
& \# \text { cosets }=[G: N]=\frac{|G|}{|N|}=P-1 \tag{t}
\end{align*}
$$

Lets find these cosets
let $g_{a}=\left(\begin{array}{lll}a & & \\ & 1 & \ddots \\ & \ddots & 1\end{array}\right)$

$$
\begin{aligned}
& N g_{a}=\left\{n g_{a} l n \in N\right\} \\
& \operatorname{det}\left(n g_{a}\right)=\operatorname{det}(n) \operatorname{det}\left(g_{a}\right) \\
&=1 \cdot a \\
&=a
\end{aligned}
$$

$\Rightarrow a \neq b$ then $g_{b}=\left(\begin{array}{lll}b_{1} & \\ & \ddots & \\ & \ddots\end{array}\right) \notin \mathrm{Ng}_{a}$
$\Rightarrow \mathrm{Ng}_{a}$ and Ng_{b} are distinct cosets

$$
\Rightarrow N=N g_{1}, N g_{2}, \ldots, N g_{p-1}
$$

are P-1 distinct cosets
\Rightarrow by (t) these are all the coset

$$
\Rightarrow G / N=\left\{N g_{1}, N g_{2}, \ldots, N g_{p-1}\right\}
$$

What does the multiplication look like?

$$
\begin{aligned}
& N g_{a} \cdot N g_{b}=N g_{a} g_{b} \\
& =N\left(\begin{array}{llll}
a & & \\
& 1 & \ddots \\
& \ddots & \\
& & & 1
\end{array}\right)\left(\begin{array}{llll}
b_{1} & & \\
& & \ddots & \\
& & \ddots & 1
\end{array}\right) \\
& =N\left(\begin{array}{llll}
a \cdot b & & & \\
& & \ddots & \\
& & \ddots & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right. \\
& =N g_{a b} \\
& \Rightarrow N g_{a} \cdot N g_{b}=N g_{a b}
\end{aligned}
$$

so if we write $a=\mathrm{Ng}_{a}$ then

$$
\begin{gathered}
G / N=\{\square,[2, \ldots, a p\} \text { and } \\
\quad a \cdot \square=a \cdot b
\end{gathered}
$$

can you see that this now "looks like" the group \mathbb{F}_{p}^{*} ?

